Interesting definite integrals
We will see a list of few integrals which yields to differentiation under the integral sign:
-
∫∞0arctan(a(xn))xndx=a1−1nB(12n,1−12n)2(n−1)=πa1−1n2(n−1)sin(π2n)
or a more general result, for k≥n
∫∞0arctan(a(xk))xndx=πan−1k2(n−1)sin(k−n+12kπ) -
∫π/20log(1+asin(x)2)dx=πlog(√a+1+12)
-
∫∞0e−a√xsin√xxdx=π−2arctana
-
∫∞0log(1+ax3)1+x3dx=13√3(2√3πarctan(1√3(2a13+1))+3πlog(a23+a13+1))−π29
-
∫∞0xlog(1+ax3)1+x3dx=π29−13√3(2√3πarctan(1√3(2a13+1))−3πlog(a23+a13+1))
-
∫∞0log(a2x2+1a2+1)11−x2dx=−arctan(a)2
-
∫10log(1+ax)x√1−x2dx=12log(√a2−1+a)2+π28
-
∫∞0log(ax+b)(x+1)2dx=alog(a)−blog(b)a−b
-
∫∞0e−ax2sin(bx)2x2dx=12√π(b√πerf(b√a)+√ae−b2/a)−12√πa
-
This integral is different. The rule is applied twice, and integrated back twice, finding the constant of integration each time.
∫∞0e(−ax)sin(bx)5x2dx=−316πa−532b(log(25)−3log(9))+58aarctan(ab)−516aarctan(a3b)+116aarctan(a5b)−532blog(a2+25b225b2)+1532blog(a2+9b29b2)−516blog(a2+b2b2) -
More complicated than the previous, the rule is to be applied 5 times:
∫∞0e(−ax)sin(bx)5x5dx=1128πa4+564πa2b2+115384πb4−5192a4arctan(ab)+532a2b2arctan(ab)−5192b4arctan(ab)+5384a4arctan(a3b)−4564a2b2arctan(a3b)+135128b4arctan(a3b)−1384a4arctan(a5b)+2564a2b2arctan(a5b)−625384b4arctan(a5b)+5192a3blog(25)−564a3blog(9)−125192ab3log(a2+25b2)+4564ab3log(a2+9b2)−596ab3log(a2+b2)+596a3blog(a2b2+1)−564a3blog(a29b2+1)+5192a3blog(a225b2+1)So, if a=0, it reduces to a simpler form:
∫∞0sin(bx)5x5dx=115384πb4In Sage, it can be applied as:
-
∫π/20e−bsec(x)2sin(atanx)2dx=π4(1−e−2a)−18π(erfc(a√b+√b)e(4a)+erfc(−a√b+√b)−2)e(−2a)−14πerf(√b)
or in particular, when b→0,
∫π/20sin(atanx)2dx=π4(1−e−2a) -
∫∞0log(1+ax3)(1−x+x2)dx=2√3πlog(1+a13+a23)
-
∫10arctanaxx√1−x2dx=π2sinh−1a
-
∫10log(1+ax(1−x))xdx=∞∑i=1(−1)i−1aii2(2ii)=12log(a+2−√a2+4a2)2⟹∞∑i=11i2(2ii)=π218⟹∞∑i=12ii2(2ii)=π28 etc.
-
∫π0log(1−2acosx+a2)dx=2πlog|a|
-
∫π/40(logtan(π4+x))ntan(2x)dx=n!2n(1−12n+1)ζ(n+1)
-
∫10log(x+a√1−x2)2(x−a√1−x2)2xdx1−x2=2πarctana
-
The functions in the answer are Beta and the Polygamma:
∫π/20sin(x)alogsinx√1+sin(x)2dx=116(ψ0(a+14)−ψ0(a+34))B(a+14,12)