Interesting definite integrals

We will see a list of few integrals which yields to differentiation under the integral sign:

  1. 0arctan(a(xn))xndx=a11nB(12n,112n)2(n1)=πa11n2(n1)sin(π2n)

    or a more general result, for kn

    0arctan(a(xk))xndx=πan1k2(n1)sin(kn+12kπ)
  2. π/20log(1+asin(x)2)dx=πlog(a+1+12)
  3. 0eaxsinxxdx=π2arctana
  4. 0log(1+ax3)1+x3dx=133(23πarctan(13(2a13+1))+3πlog(a23+a13+1))π29
  5. 0xlog(1+ax3)1+x3dx=π29133(23πarctan(13(2a13+1))3πlog(a23+a13+1))
  6. 0log(a2x2+1a2+1)11x2dx=arctan(a)2
  7. 10log(1+ax)x1x2dx=12log(a21+a)2+π28
  8. 0log(ax+b)(x+1)2dx=alog(a)blog(b)ab
  9. 0eax2sin(bx)2x2dx=12π(bπerf(ba)+aeb2/a)12πa
  10. This integral is different. The rule is applied twice, and integrated back twice, finding the constant of integration each time.

    0e(ax)sin(bx)5x2dx=316πa532b(log(25)3log(9))+58aarctan(ab)516aarctan(a3b)+116aarctan(a5b)532blog(a2+25b225b2)+1532blog(a2+9b29b2)516blog(a2+b2b2)
  11. More complicated than the previous, the rule is to be applied 5 times:

    0e(ax)sin(bx)5x5dx=1128πa4+564πa2b2+115384πb45192a4arctan(ab)+532a2b2arctan(ab)5192b4arctan(ab)+5384a4arctan(a3b)4564a2b2arctan(a3b)+135128b4arctan(a3b)1384a4arctan(a5b)+2564a2b2arctan(a5b)625384b4arctan(a5b)+5192a3blog(25)564a3blog(9)125192ab3log(a2+25b2)+4564ab3log(a2+9b2)596ab3log(a2+b2)+596a3blog(a2b2+1)564a3blog(a29b2+1)+5192a3blog(a225b2+1)

    So, if a=0, it reduces to a simpler form:

    0sin(bx)5x5dx=115384πb4

    In Sage, it can be applied as:

    # Takes a few seconds
    var('a b')
    forget()
    assume(a>0)
    intg = e^(-a*x)*sin(b*x)^5/x^5
    tmp = integrate(integrate(diff(intg,a,5),x,0,oo),a)
    h1(a) = tmp-limit(tmp,a=oo)
    tmp = integrate(h1(a),a)
    h2(a) = tmp-limit(tmp,a=oo)
    tmp = integrate(h2(a),a)
    h3(a) = tmp-limit(tmp,a=oo)
    tmp = integrate(h3(a),a)
    h4(a) = tmp-limit(tmp,a=oo)
    tmp = integrate(h4(a),a)
    h5(a) = tmp-limit(tmp,a=oo)
    
  12. π/20ebsec(x)2sin(atanx)2dx=π4(1e2a)18π(erfc(ab+b)e(4a)+erfc(ab+b)2)e(2a)14πerf(b)

    or in particular, when b0,

    π/20sin(atanx)2dx=π4(1e2a)
  13. 0log(1+ax3)(1x+x2)dx=23πlog(1+a13+a23)
  14. 10arctanaxx1x2dx=π2sinh1a
  15. 10log(1+ax(1x))xdx=i=1(1)i1aii2(2ii)=12log(a+2a2+4a2)2i=11i2(2ii)=π218i=12ii2(2ii)=π28 etc.
  16. π0log(12acosx+a2)dx=2πlog|a|
  17. π/40(logtan(π4+x))ntan(2x)dx=n!2n(112n+1)ζ(n+1)
  18. 10log(x+a1x2)2(xa1x2)2xdx1x2=2πarctana
  19. The functions in the answer are Beta and the Polygamma:

    π/20sin(x)alogsinx1+sin(x)2dx=116(ψ0(a+14)ψ0(a+34))B(a+14,12)